Lagrangian Jacobian inverse for nonholonomic robotic systems

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geometric Mechanics, Lagrangian Reduction, and Nonholonomic Systems

This paper surveys selected recent progress in geometric mechanics, focussing on Lagrangian reduction and gives some new applications to nonholonomic systems, that is, mechanical systems with constraints typified by rolling without slipping. Reduction theory for mechanical systems with symmetry has its roots in the classical works in mechanics of Euler, Jacobi, Lagrange, Hamilton, Routh, Poinca...

متن کامل

Discrete Nonholonomic Lagrangian Systems on Lie Groupoids

This paper studies the construction of geometric integrators for nonholonomic systems. We derive the nonholonomic discrete Euler-Lagrange equations in a setting which permits to deduce geometric integrators for continuous nonholonomic systems (reduced or not). The formalism is given in terms of Lie groupoids, specifying a discrete Lagrangian and a constraint submanifold on it. Additionally, it ...

متن کامل

Nonholonomic Lagrangian Systems on Lie Algebroids

This paper presents a geometric description on Lie algebroids of Lagrangian systems subject to nonholonomic constraints. The Lie algebroid framework provides a natural generalization of classical tangent bundle geometry. We define the notion of nonholonomically constrained system, and characterize regularity conditions that guarantee that the dynamics of the system can be obtained as a suitable...

متن کامل

Modified transpose Jacobian control of robotic systems

The simplicity of Transpose Jacobian (TJ) control is a significant characteristic of this algorithm for controlling robotic manipulators. Nevertheless, a poor performance may result in tracking of fast trajectories, since it is not dynamics-based. Use of high gains can deteriorate performance seriously in the presence of feedback measurement noise. Another drawback is that there is no prescribe...

متن کامل

Lagrange-d’Alembert SPARK Integrators for Nonholonomic Lagrangian Systems

Lagrangian systems with ideal nonholonomic constraints can be expressed as implicit index 2 differential-algebraic equations (DAEs) and can be derived from the Lagrange-d’Alembert principle. We define a new nonholonomically constrained discrete Lagrange-d’Alembert principle based on a discrete Lagrange-d’Alembert principle for forced Lagrangian systems. Nonholonomic constraints are considered a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nonlinear Dynamics

سال: 2015

ISSN: 0924-090X,1573-269X

DOI: 10.1007/s11071-015-2288-6