Lagrangian Jacobian inverse for nonholonomic robotic systems
نویسندگان
چکیده
منابع مشابه
Geometric Mechanics, Lagrangian Reduction, and Nonholonomic Systems
This paper surveys selected recent progress in geometric mechanics, focussing on Lagrangian reduction and gives some new applications to nonholonomic systems, that is, mechanical systems with constraints typified by rolling without slipping. Reduction theory for mechanical systems with symmetry has its roots in the classical works in mechanics of Euler, Jacobi, Lagrange, Hamilton, Routh, Poinca...
متن کاملDiscrete Nonholonomic Lagrangian Systems on Lie Groupoids
This paper studies the construction of geometric integrators for nonholonomic systems. We derive the nonholonomic discrete Euler-Lagrange equations in a setting which permits to deduce geometric integrators for continuous nonholonomic systems (reduced or not). The formalism is given in terms of Lie groupoids, specifying a discrete Lagrangian and a constraint submanifold on it. Additionally, it ...
متن کاملNonholonomic Lagrangian Systems on Lie Algebroids
This paper presents a geometric description on Lie algebroids of Lagrangian systems subject to nonholonomic constraints. The Lie algebroid framework provides a natural generalization of classical tangent bundle geometry. We define the notion of nonholonomically constrained system, and characterize regularity conditions that guarantee that the dynamics of the system can be obtained as a suitable...
متن کاملModified transpose Jacobian control of robotic systems
The simplicity of Transpose Jacobian (TJ) control is a significant characteristic of this algorithm for controlling robotic manipulators. Nevertheless, a poor performance may result in tracking of fast trajectories, since it is not dynamics-based. Use of high gains can deteriorate performance seriously in the presence of feedback measurement noise. Another drawback is that there is no prescribe...
متن کاملLagrange-d’Alembert SPARK Integrators for Nonholonomic Lagrangian Systems
Lagrangian systems with ideal nonholonomic constraints can be expressed as implicit index 2 differential-algebraic equations (DAEs) and can be derived from the Lagrange-d’Alembert principle. We define a new nonholonomically constrained discrete Lagrange-d’Alembert principle based on a discrete Lagrange-d’Alembert principle for forced Lagrangian systems. Nonholonomic constraints are considered a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nonlinear Dynamics
سال: 2015
ISSN: 0924-090X,1573-269X
DOI: 10.1007/s11071-015-2288-6